Middle Atmospheric Changes Caused by the January and March 2012 Solar Proton Events

نویسندگان

  • C. H. Jackman
  • C. E. Randall
  • V. L. Harvey
  • S. Wang
  • E. L. Fleming
  • M. López-Puertas
چکیده

The recent 23–30 January and 7–11 March 2012 solar proton event (SPE) periods were substantial and caused significant impacts on the middle atmosphere. These were the two largest SPE periods of solar cycle 24 so far. The highly energetic solar protons produced considerable ionization of the neutral atmosphere as well as HOx (H, OH, HO2) and NOx (N, NO, NO2). We compute a NOx production of 1.9 and 2.1 Gigamoles due to these SPE periods in January and March 2012, respectively, which places these SPE periods among the 12 largest in the past 50 yr. Aura Microwave Limb Sounder (MLS) observations of the peroxy radical, HO2, show significant enhancements of > 0.9 ppbv in the northern polar mesosphere as a result of these SPE periods. Both MLS measurements and Goddard Space Flight Center (GSFC) two-dimensional (2-D) model predictions indicated middle mesospheric ozone decreases of > 20 % for several days in the northern polar region with maximum depletions > 60 % over 1–2 days as a result of the HOx produced in both the January and March 2012 SPE periods. The SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instruments measured NO and NO2 (∼NOx), which indicated enhancements of over 20 ppbv in most of the northern polar mesosphere for several days as a result of these SPE periods. The GSFC 2-D model and the Global Modeling Initiative three-dimensional chemistry and transport model were used to predict the medium-term (∼months) influence and showed that the polar middle atmospheric ozone was most affected by these solar events in the Southern Hemisphere due to the increased downward motion in the fall and early winter. The downward transport moved the SPE-produced NOy to lower altitudes and led to predicted modest destruction of ozone (5–13 %) in the upper stratosphere days to weeks after the March 2012 event. Polar total ozone reductions were predicted to be a maximum of 1.5 % in 2012 due to these SPEs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latitudinal extent of the January 2005 solar proton event in the Northern Hemisphere from satellite observations of hydroxyl

We utilise hydroxyl observations from the MLS/Aura satellite instrument to study the latitudinal extent of particle forcing in the northern polar region during the January 2005 solar proton event. MLS is the first satellite instrument to observe HOx changes during such an event. We also predict the hydroxyl changes with respect to the magnetic latitude by the Sodankylä Ion and Neutral Chemistry...

متن کامل

The Effects of North Atlantic Oscillation on the atmospheric middle level Anomaly and precipitation of Iran.Case study: west of Iran.

The purpose of this study was to investigate the effects of the North Atlantic Oscillation on the middle levels of Atmosphere and precipitation changes in the West of country. To do this, first monthly rainfall data of 17 synoptic stations of the West Country in period of 30 years from 1984 to 2014 of country were collected from Meteorological Organization. As well as North Atlantic Oscillation...

متن کامل

The Effect of Solar Particles in the Choice of Alloy Shielding in a Satellite

The damages and logical failures in dierent parts of a satellite may occur during a solar event, when a bulk of solar energetic particles approaching the Earth. During solar events, these particles may cause extensive damages which are even permanent (hard errors). A way of damage reduction is designing a proper coating as the fuselage. As protons are the major component of solar particles and ...

متن کامل

دسته‌بندی تاریکی‌های کوچک‌مقیاس از فوران‌های تابش‌های فرابنفش دور خورشید با استفاده از نظریه گراف

Coronal dimmings in both micro and macro scales, can be observed by extreme ultraviolet images, recorded from Solar Dynamics Observatory or Atmospheric Imaging Assembly (SDO/AIA). Mini-dimmings are sometimes associated with wave-like brightening, called coronal mass ejections. Here, the sun full disk images with 171 Å wavelenght, cadence of 2.5, and  0.6 arcsec cell size, were taken on 3 March ...

متن کامل

Mesospheric dynamical changes induced by the solar proton events in October–November 2003

[1] The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct–Nov 2003, the fourth largest period of solar proton events (SPEs) measured in the past 40 years. The highly energetic solar protons produced odd hydrogen (HOx) and odd nitrogen (NOy). Significant short-live...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016